Continued fractions with $SL(2, Z)$-branches: combinatorics and entropy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the entropy of Japanese continued fractions

We consider a one-parameter family of expanding interval maps {Tα}α∈[0,1] (japanese continued fractions) which include the Gauss map (α = 1) and the nearest integer and by-excess continued fraction maps (α = 1 2 , α = 0). We prove that the Kolmogorov-Sinai entropy h(α) of these maps depends continuously on the parameter and that h(α) → 0 as α → 0. Numerical results suggest that this convergence...

متن کامل

Natural Extensions and Entropy of Α-continued Fractions

We construct a natural extension for each of Nakada’s α-continued fraction transformations and show the continuity as a function of α of both the entropy and the measure of the natural extension domain with respect to the density function (1+ xy). For 0 < α ≤ 1, we show that the product of the entropy with the measure of the domain equals π/6. We show that the interval (3 − √ 5)/2 ≤ α ≤ (1 + √ ...

متن کامل

The Entropy of Nakada’s Α-continued Fractions: Analytical Results

We study the ergodic theory of a one-parameter family of interval maps Tα arising from generalized continued fraction algorithms. First of all, we prove the dependence of the metric entropy of Tα to be Hölder-continuous in the parameter α. Moreover, we prove a central limit theorem for possibly unbounded observables whose bounded variation grows moderately. This class of functions is large enou...

متن کامل

On SL2(Z) and Topology

FP (g) = trgKerP − trgCokerP ∈ R(S) where R(S1) is the character ring of the S1-modules. We say that P is rigid with respect to this S1-action, if FP (g) is independent of g. Two well-known examples of rigid elliptic operators are the signature operator ds and the Dirac operator D [AH]. Now let L̃Spin(2l) denote the central extension of the loop group LSpin(2l) and E be a positive energy represe...

متن کامل

Continued Fractions with Multiple Limits

For integers m ≥ 2, we study divergent continued fractions whose numerators and denominators in each of the m arithmetic progressions modulo m converge. Special cases give, among other things, an infinite sequence of divergence theorems, the first of which is the classical Stern-Stolz theorem. We give a theorem on a class of Poincaré type recurrences which shows that they tend to limits when th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2018

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/7109